HEPTALENE-1,8-DIONE AND HEPTALENE-3,8-DIONE DERIVATIVES

Shigeyasu Kuroda and Toyonobu Asao*

Department of Chemistry, College of General Education

Tohoku University, Kawauchi, Sendai 980 Japan

(Received in Japan 9 November 1976; received in UK for publication 14 December 1976)

Heptalene (A) is a typical non-aromatic cyclic unsaturated compound having 12 π electrons and was synthesized as extremely unstable compound,^{1,2)} and its fine structure was also studied by nmr spectroscopy.²⁾ Furthermore, dianion of heptalene (B) having 14 π electrons was also synthesized by reduction of heptalene with lithium, and the compound was found to be aromatic with π -bond delocalized planar geometry.³⁾ However, the chemistry of heptalenium dication (C) having 10 π electrons which may be aromatic was not studied yet.

In the present paper, methoxy derivatives of heptalene-1,8-dione and heptalene-3,8-dione were synthesized and their properties were studied in connection with heptalenium dications.

We have reported in the preceding paper that we have obtained 8H-cyclohepta[d]tropolone (<u>1</u>) and its methyl ether (<u>2</u>) and that an attempted oxidation of <u>1</u> to heptalene-2,3-dione was unsuccessful.⁴)

Although the oxidation of $\underline{2}$ with SeO₂ afforded a mixture of formylbenzotropones ($\underline{3}$) in poor yield,⁵) the oxidation of $\underline{2}$ with CrO₃-pyridine complex in pyridine yielded three products, ($\underline{4}$), ($\underline{5}$) and ($\underline{6}$) in the yields of 49.5, 27 and 11%, respectively. These compounds show the same molecular ion peaks in their mass spectra at m/e 214 (base peak; m/e 115) which correspond to desired diones, and the structures of these products were determined to be 9-methoxy-

289

heptalene-1,8-dione, 7-methoxyheptalene-1,8-dione and 2-methoxyheptalene-3,8dione, respectively, mainly by their nmr spectra.

Physical properties of these compounds were shown in Table 1.

IR spectra of $\underline{4}$ and $\underline{5}$ show the complicated absorption bands between 1550~ 1640 cm⁻¹, however, the spectrum of $\underline{6}$ shows simple two bands and its simplicity may due to the symmetrical structure of $\underline{6}$.

The solutions of these compounds in strong acids such as conc. H_2SO_4 or FSO_3H are reddish and the UV spectra revealed considerable bathochromic shifts (30~50 nm) compared to those in MeOH. NMR signals of these compounds in the acidic solution shifted to downfield as shown in Table 1.

Both the ring protons and methoxy protons of 2-methoxytropone in FSO_3H resonate 0.5 ppm downfield than those in $CDCl_3$.

If the downfield shifts of the compounds $(\underline{4}, \underline{5} \text{ and } \underline{6})$ are due to the two extra positive charges introduced, these shifts may proportional to the change of the mean π -charge density per carbon atom and are evaluated as

$$\Delta \delta = 10.6 \times \frac{2}{12} = 1.77 \text{ ppm}^{-6}$$

	4	5	<u>6</u>
mp (°C)	171~172	147~148	202~203
Color	yellow needles	yellow needles	yellow cryst.
IR (KBr) cm ⁻¹	1618, 1595 1583, 1550	1625, 1580 1550	1615, 1596
λ <mark>MeOH</mark> nm max nm (log ε)	$258 (4.39) 283 (4.10) 315^{sh}(3.85)375 (4.03)412^{sh}(3.73)$	251 (4.14) 258 ^{sh} (4.08) 300 (4.21) 350 ^{sh} (3.66)	$\begin{array}{ccc} 273 & (4.31) \\ 366^{\rm sh} (3.63) \\ 375 & (3.64) \\ 395^{\rm sh} (3.50) \\ 420^{\rm sh} (3.19) \end{array}$
$\lambda_{\max}^{\text{conc. H}_2\text{SO}_4}$ nm (log ε)	$\begin{array}{cccc} 247 & (4.35) \\ 296 & (4.23) \\ 324 & (4.40) \\ 358 & (3.67) \\ 400 & (4.39) \\ 430^{\mathrm{sh}} & (3.63) \\ 456 & (3.72) \end{array}$	255 (4.27) 283 (4.31) 333 (4.62) 402 (3.72) 422 ^{sh} (3.58)	292 (4.61) 300 (4.61) 318 (4.52) 384 (3.94) 435 (3.93)
H-nmr δ ppm in CDCl ₃	4.07 (s, OCH ₃) 6.7~7.3 (m, 6H) 7.48 (d, J=13 Hz, H-6) 7.82 (s, H-10)	4.01 (s, OCH ₃) 6.85 (s, H-6) 6.9~7.1 (m, 4H) 7.16 (d, J=13 Hz, H-7) 7.98 (d, J=13 Hz, H-6)	4.00 (s, OCH ₃) 6.7~7.1 (m, 4H) 7.1~7.5 (m, 3H)
H-nmr & ppm in FSO ₃ H	4.65 (s, OCH ₃) 8.4~8.9 (m, 3H) 8.9~9.3 (m, 2H) 9.4~9.7 (2H)	4.67 (s, OCH ₃) 8.2~8.7 (m, 3H) 8.7~9.2 (m, 4H)	4.67 (s, OCH ₃) 8.0~8.5 (m, 3H) 8.5~8.9 (m, 2H) 9.0~9.5 (m, 2H)
∆s ppm*	1.80	1.76	1.60

Table 1. Physical properties of compounds (4), (5) and (6).

* The differences in chemical shifts of the center of gravity of the ring protons between observed values in CDCl₃ and in FSO₃H.

The observed $\Delta\delta$ values are in accord with the evaluated value.

These observations suggest that the compounds must exist as the corresponding dihydroxyheptalenium dications ($\underline{4a}$, $\underline{5a}$ and $\underline{6a}$) in the strong acidic media.

References

1) H. J. Dauben, Jr., and D. J. Bertelli, J. Am. Chem. Soc., 83, 4659 (1961).

- 2) E. Vogel, H. Königshofen, K. Müllen and J. F. M. Oth, <u>Angew. Chem.</u>, <u>86</u>, 777 (1974); <u>Angew. Chem.</u>, <u>intern.</u> <u>ed.</u>, <u>13</u>, 732 (1974).
- J. F. M. Oth, K. Müllen, H. Königshofen, J. Wassen and E. Vogel, <u>Helv</u>. Chim. Acta, 57, 2387 (1974).
- 4) S. Kuroda and T. Asao, Tetrahedron Lett., preceding paper.
- 5) The most useful method for oxidation of tropilidene to tropone has been known to use SeO₂ in aqueous dioxane; G. Sunagawa, N. Soma, H. Nakao and Y. Matsumoto, J. Pharm. Soc. Japan, 81, 1792 (1961); P. Radlick, J. Org. Chem., 29. 960 (1964).
- 6) H. Spiesecke and G. Schneider, <u>Tetrahedron Lett.</u>, 468 (1961); P. J. Garratt and M. V. Sargent, "Nonbenzenoid Aromatics," Vol. II, ed. by J. P. Snyder, Academic Press, New York 1971, p 241.